Treating Disease & Improving Drug Safety

Targeting Mitochondrial Dysfunction & Toxicity

Coverage Includes:
• Advancing the Science of Mitochondria
• Targeting Mitochondrial-Related Disease & Injury
• Mitochondrial Targeting & Toxicity

KEYNOTE PRESENTATION:
 Genetic Approaches to Identify Mitochondria-to-Nucleus Retrograde Targets Involved in Drug Toxicity
Keshav K. Singh, Ph.D., Departments of Genetics, Pathology, and Environmental Health; Center for Free Radical Biology, Center for Aging and UAB Comprehensive Cancer Center, University of Alabama at Birmingham

EVENT SHORT COURSE:
 Drug-Induced Mitochondrial Toxicity
Yvonne Will, Ph.D., Senior Director & Head, Science and Technology Strategy, Drug Safety Research and Development, Pfizer R&D
Kendall B. Wallace, Ph.D., Professor, Biochemistry & Molecular Biology, University of Minnesota-Duluth
Rick G. Schnellmann, Ph.D., Professor, College of Pharmacy, Medical University of South Carolina

March 19-20, 2015
Hyatt Regency Cambridge | Cambridge, MA

Register by March 18th & SAVE up to $200!
www.healthtech.com/mitochondrial-targeting
Mitochondrial failure and/or dysfunction has been identified as an important factor in diseases ranging from neurodegenerative conditions (ALS, Alzheimer’s, Parkinson’s Disease), epilepsy and autism, to diseases of the cardiovascular system, liver, and kidney, as well as cancer and diabetes. The broad impact of mitochondria in so many diseases makes them prime targets for therapeutics.

Since medications for many diseases cause unwanted toxicity to the mitochondria, it is extremely critical for drug discovery and development researchers to be able to predict and prevent this serious side effect for their compounds. This conference will present the latest research in new targeting pathways, novel therapeutics, and new breakthroughs in the understanding of mitochondrial function, as well as methods to decrease or eliminate mitochondrial toxicity when developing therapeutics.

If you have questions, please contact:

Elizabeth J. Lamb
Senior Conference Director
Cambridge Healthtech Institute
Phone: 781-247-6259
Email: elamb@healthtech.com

Should you be on this list? 2014 Participating Institutions Included:

Achillion Pharmaceuticals Inc.
ActoKine Therapeutics
Ajinomoto Pharmaceuticals USA Inc.
Alexion Translational Medicine Grp
Astellas Research Institute of American LLC
AstraZeneca Pharmaceuticals BioEnergetics LLC
Biolog Inc
Brigham & Womens Hospital
Cleveland Clinic Foundation
Dalhousie University
EHH Breast Cancer R&D and Treatment Ctr
Eisai Research Institute
EMD Millipore Corp
ENANTA Pharmaceuticals Inc.
Eotvos University
Fitchburg State College
Fukuoka University
Genzyme Corp A Sanofi Co
GlaxoSmithKline
Henry M Jackson Foundation
Jewish General Hospital
Johns Hopkins University
Lund University
Manufacturing Chemist
McGill University
MD Anderson Cancer Ctr
Mitologics SAS
Nestle Institute of Health Sciences SA
NeuroVive Pharmaceutical AB
Northeastern University
Pfizer Global R&D Groton Labs
Pioneer Valley Life Sciences
Renovo Neural Inc.
Seahorse Bioscience Inc.
Seoul Natl University
Stealth Peptides Inc.
Sunovion Pharmaceuticals Inc.
Takeda Pharmaceutical Co Ltd
Third Rock Ventures LLC
Thomas Jefferson University
University Of Arizona
University Of Connecticut Storrs
University Of Liverpool
University Of Michigan
University Of Pennsylvania
University Of Texas San Antonio
University Of Vermont
Vertex Pharmaceuticals Inc.
Mitochondria produce almost all the energy in cells, but also chronically expose the cell to cytotoxic free radicals. Mitochondrial disease and toxicity is a rapidly advancing field and the consequences of mitochondrial impairment should be appreciated by scientists in all disciplines. Numerous widely prescribed therapeutics can undermine mitochondrial function by interfering with DNA replication or expression, and more acutely, by uncoupling or inhibiting oxidative phosphorylation, leading to organ dysfunction and damage. This course will review fundamental concepts of mitochondrial biology and the many different mechanisms by which xenobiotics interfere with mitochondrial function. Both common and novel in vitro screening approaches will be described as well as lectures on mitochondrial dysfunction in the kidney, liver and heart.

* Separate registration required
Mitochondria produce almost all the energy in cells, but also chronically expose the cell to cytotoxic free radicals. Mitochondrial disease and toxicity is a rapidly advancing field and the consequences of mitochondrial impairment should be appreciated by scientists in all disciplines. Numerous widely prescribed therapeutics can undermine mitochondrial function by interfering with DNA replication or expression, and more acutely, by uncoupling or inhibiting oxidative phosphorylation, leading to organ dysfunction and damage. This course will review fundamental concepts of mitochondrial biology and the many different mechanisms by which xenobiotics interfere with mitochondrial function. Both common and novel in vitro screening approaches will be described as well as lectures on mitochondrial dysfunction in the kidney, liver and heart.

* Separate registration required

Agenda

THURSDAY, MARCH 19

8:00 am – 12:00 pm SC1: Drug-Induced Mitochondrial Toxicity*

Chair: Yvonne Will, Ph.D., Senior Director & Head, Science and Technology Strategy, Drug Safety Research and Development, Pfizer R&D
Kendall B. Wallace, Ph.D., Professor, Biochemistry & Molecular Biology, University of Minnesota-Duluth
Rick G. Schnellmann, Ph.D., Professor, College of Pharmacy, Medical University of South Carolina

Mitochondria contain multiple copies of mtDNA, varying from 100-1000 copies per cell among different tissues. mtDNA content is reduced by a variety of drugs resulting in toxicity. We have developed genetic approaches to identify nuclear targets involved in retrograde signaling involved in communicating the mitochondrial state to the nucleus, resulting in altered nuclear gene expression, cell physiology, and metabolism mediating drug toxicity.

1:00 Registration for Main Conference

2:00 Chairperson’s Opening Remarks
Elizabeth Lamb, Senior Conference Director, CHI

ADVANCING THE SCIENCE OF MITOCHONDRIA

2:50 Next-Generation Mitochondrial Medicine Platform: Integrated Bioenergetic Phenotyping in Oncology as a Case Study
Anne Diers, Ph.D., Program Leader, Cancer Biology, Berg

A next-generation mitochondrial medicine platform was developed that allows for identification of unique bioenergetic facets that predict cellular responses to stress (e.g., therapeutics, microenvironmental conditions). Using whole-cell integrated energy metabolism parameters coupled with mitochondrial substrate-level oxidation measurements, predictive phenotypic signatures for anti-cancer responses can be identified and molecular adaptive therapy strategies devised. Here, we report the use of this approach to identify the phenotypic signature for sensitivity to BPM 31510, a ubiquinone-containing formulation that alters mitochondrial metabolism currently in clinical trials for treatment of solid tumors, and highlight the clinical correlates from patients treated with this compound.

3:20 AIF Mediates Cell Survival, but Not Death, in Lymphocytes by Regulating Complex I Integrity
Sandra Melasta, Ph.D., Professor, Immunology, St. Jude Children’s Research Hospital

Apoptosis inducing factor (AIF) is a mitochondrial inter-membrane space protein initially described to mediate cell death that proceeds in the absence of caspase activity. More recent studies revealed that AIF is required for the efficient assembly of complex I of the respiratory chain and thus plays a role in maintaining normal oxidative phosphorylation (OXPHOS). Thymocytes and B cells lacking AIF displayed normal caspase-dependent and -independent cell death. These studies suggest that the primary role of AIF in lymphocytes relates to complex I function and not to mediating cell death. Therefore, a cell’s dependence on AIF is dictated by its reliance on OXPHOS to generate ATP.

3:50 Refreshment Break in the Exhibit Hall with Poster Viewing

4:30 A New Answer to an Old Problem: The Energization of Brain Mitochondria is Regulated by Cytosolic Calcium via the “Mitochondrial Gas Pedal” and Does Not Require the Mitochondrial Ca Uptake via the Ca Unipporter
Frank Gellerich, Ph.D., Head, Bioenergetic Laboratory, Neurological University Hospital, Otto-von Guericke-University Magdeburg

In contrast to the classic opinion that the mitochondrial activity is regulated by Ca2+ after its uptake via the Ca2+ unipporter, we found that the energization of mitochondria is realized by the “mitochondrial gas pedal” and is strongly regulated by cytosolic Ca2+ but not by matrix Ca2+. The "mitochondrial gas pedal" realizes the mitochondrial pyruvate supply via oxidizing reactions of pyruvate formation as LDH and GAPDH both generating NADH together with the malate/aspartate shuttle (G3PS) both oxidizing NADH. Our model predicts that at sufficiently low Ca2+cyt mitochondria (e.g. in neurons and red muscle) switch into a substrate-limited state preventing dangerous large ROS.
Mitochondrial dysfunction has long been recognized as a hallmark of cancer, and many neurodegenerative conditions are associated with excessive mitochondrial fission and inhibition of mitophagy. However, it is not clear whether these abnormalities in mitochondrial dynamics and removal are the cause of or the result of the pathology. Using a variety of pharmacological tools that we developed rationally, we find that inhibition of mitochondrial fission inhibits neurodegeneration in several models of Parkinson’s and Huntington’s. A critical role from mitophagy was also identified. The molecular basis for protection from neurodegeneration and the potential utility of our novel pharmacological tools as leads for drug development will be the topic of our presentation.

Mitochondrial Immobilization Mediated by Syntaphilin Facilitates Survival of Demyelinated Axons
Bruce D. Trapp, Ph.D., Department Head, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic
The purpose of this study was to define the roles of mitochondrial volume and distribution in axonal degeneration following acute CNS demyelination. We show that the axonal mitochondrial volume increase following acute demyelination of WT CNS axons does not occur in demyelinated axons deficient in syntaphilin, an axonal molecule that immobilizes stationary mitochondria to microtubules. These findings were supported by time-lapse imaging of WT and syntaphilin-deficient axons in vitro. These results support the concept that syntaphilin-mediated immobilization of mitochondria to microtubules is required for the volume increase of axonal mitochondria following acute demyelination and protects against axonal degeneration in the CNS.

Welcome Reception in the Exhibit Hall with Poster Viewing
6:30 End of Day 1

FRIDAY, MARCH 20
8:00 Morning Coffee

TARGETING MITOCHONDRIAL-RELATED DISEASE & INJURY

8:25 Chairperson’s Remarks
Johannes Ehinger, M.D., Mitochondrial Pathophysiology Unit, Lund University

8:30 Adaptive Metabolic Targeting of BPM 31510 for the Treatment of Cancer
Michael Kiebish, Ph.D., Director, Integrative Systems Medicine, Diagnostics, Berg Research Institute, Cleveland Clinic
The purpose of this study was to determine the roles of mitochondrial volume and distribution in axonal degeneration following acute CNS demyelination. We show that the axonal mitochondrial volume increase following acute demyelination of WT CNS axons does not occur in demyelinated axons deficient in syntaphilin, an axonal molecule that immobilizes stationary mitochondria to microtubules. These findings were supported by time-lapse imaging of WT and syntaphilin-deficient axons in vitro. These results support the concept that syntaphilin-mediated immobilization of mitochondria to microtubules is required for the volume increase of axonal mitochondria following acute demyelination and protects against axonal degeneration in the CNS.

9:30 Targeting Mitochondrial Dysfunction in Burn Injury
A. Aria Tzika, Ph.D., Director, NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute
Burn injury represents a significant public health problem in roughly 500,000 people per year in the USA. We probe mitochondrial skeletal muscle dysfunction that occurs in response to burn injury in a preclinical mouse burn model using novel methods. Our studies have the potential for strong clinical relevance with respect to the recovery and management of individuals with burn trauma.

10:00 Coffee Break with Exhibit & Poster Viewing

10:30 Supporting Mitochondrial Function in Cells with Complex I Dysfunction using Cell-Permeable Complex II Substrates: A Potential Novel Therapy for Complex I-Linked Mitochondrial Disease
Johannes Ehinger, M.D., Mitochondrial Pathophysiology Unit, Lund University
Chemically modified mitochondrial complex II substrates with increased cell membrane permeability can support mitochondrial respiration, increase ATP production and uphold mitochondrial membrane potential in cells with deficiencies in complex I-linked mitochondrial metabolism. This new compound class introduces the possibility to pharmacologically support patients with metabolic decompensation due to mitochondrial complex I deficiency, such as children with inborn errors of metabolism.

11:00 The Mitigation of Cytotoxic and Genotoxic Effects of Drugs on Mitochondrial DNA
Adam E. Osborne, Ph.D., Biology Department, Brandeis University
Millions of TB and HIV patients are treated with drugs that have toxic side effects. AZT, an inexpensive nucleotide reverse transcriptase inhibitor used in highly active anti-retroviral therapy, is associated with mitochondrial oxidative stress and DNA damage. Isoniazid (INH), a first line antibiotic used to treat or prevent tuberculosis, alters liver function in ~20% of patients and is fatal in 1%-2%. Toxic intermediates of INH in the liver deplete glutathione and oxygen radical scavenging enzymes. The resulting increase in free radicals can irreversibly damage mitochondria and mitochondrial DNA (mtDNA). We are investigating AZT and INH dependent mtDNA damage in cultured human liver cells, as well as whether palm fruit juice (PFJ), an extract rich in polyphenols from the fruit of the oil palm (Elaeis guineensis),...
mitochondrial health in cells and provides a powerful tool to predict whether novel mutations without sequencing is broadly applicable and could be used for early drug development or monitoring.

11:30 Sponsored Presentation (Opportunity Available)
12:00 Luncheon Presentation (Sponsorship Opportunity Available) or Lunch on Your Own

MITOCHONDRIAL TARGETING & TOXICITY

1:50 Chairperson’s Remarks
Padma K. Narayanan, Ph.D., Director, Pre-Clinical, Toxicology, Amgen

2:00 A Systematic Assessment of Mitochondrial Function Identified Novel Signatures for Drug-Induced Mitochondrial Disruption in Cells
Padma K. Narayanan, Ph.D., Director, Pre-Clinical, Toxicology, Amgen

Mitochondrial perturbation has been recognized as a contributing factor to various drug-induced organ toxicities. To address this issue, we developed a high-throughput flow cytometry-based mitochondrial signaling assay to systematically investigate mitochondrial/cellular parameters known to be directly impacted by mitochondrial dysfunction: mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (ROS), intracellular reduced glutathione (GSH) level, and cell viability. Disruptors of mitochondrial function depolarized MMP at concentrations lower than those that caused loss of cell viability, especially in cells cultured in GSM; cellular GSH levels correlated more closely to loss of viability in vitro. Subsequent classification of compounds based on ratios of IC50s of cell viability; MMP determined that this parameter is the most critical indicator of mitochondrial health in cells and provides a powerful tool to predict whether novel small molecule entities possess this liability.

2:30 Screening Small Molecules for Mitofunctional Effects: Implications for Mitochondrial Therapeutics and Mitotoxins
Gino Cortopassi, Ph.D., Professor, Molecular Biosciences, University of California, Davis; CEO, Ixchel PharmA

Mitochondrial disease is a rare/ orphan indication, with no approved or effective therapy. Thus screening known FDA-approved drugs for effects on mitochondrial function is a rational approach to shorten the usual time for clinical therapeutic development. Using 4 high-throughput assays we have identified a subset of FDA-approved drugs that target mitochondria. In addition, we have used these assays to screen potential toxicants, and identify known and novel toxicants.

3:00 Targeting Disease-Causing Defects of the Mitochondrial Genome with Engineered Mitochondrial Nucleases
Carlos T. Moraes, Ph.D., Professor, Neurology and Cell Biology, University of Miami

3:30 Inhibitors of Mitochondrial Fission as a Therapeutic Strategy for Diseases with Oxidative Stress and Mitochondrial Dysfunction
P. Hemachandra Reddy, Ph.D., Executive Director and Chief Scientific Officer, Garrison Institute on Aging; Professor of Cell Biology & Biochemistry, Neuroscience & Pharmacology and Neurology Departments, Texas Tech University Health Science Center

Research into mitochondria and cell function has revealed that mitochondrial dynamics is impaired in a large number of aging and neurodegenerative diseases, and in several inherited mitochondrial diseases, and that this impairment involves excessive mitochondrial fission, resulting in mitochondrial structural changes and dysfunction, and cell damage. Attempts have been made to develop molecules to reduce mitochondrial fission while maintaining normal mitochondrial fusion and function in those diseases that involve excessive mitochondrial fission.

4:00 Use of Multiparametric Assays on Isolated Liver Mitochondria and HepaRG Cells to predict DILI
Annie Borgne-Sanchez, Ph.D., CEO/CSO, Mitologics

We combined mitochondrial and cellular assays to predict drug-induced mitochondrial dysfunction in liver. Extensive screening of reference compounds on isolated liver mitochondria revealed a highly significant relationship between acute mitochondrial toxicity detected by this system and DILI occurrence in human. We next showed that human HepaRG differentiated cells is a pertinent and complementary model allowing detection of long-term and/or metabolites mitochondrial toxicity.

4:15 Close of Conference
Sponsor & Exhibit Information

CHI offers comprehensive sponsorship packages which include presentation opportunities, exhibit space and branding, as well as the use of the delegate lists. Sponsorship allows you to achieve your objectives before, during, and long after the event. Any sponsorship can be customized to meet your company’s needs and budget. Signing on early will allow you to maximize exposure to qualified decision-makers.

Podium Presentations - Within the Main Agenda
Showcase your solutions to a guaranteed, targeted audience. Package includes a 15- or 30-minute podium presentation within the scientific agenda, exhibit space, on-site branding and access to cooperative marketing efforts by CHI.

Breakfast & Luncheon Presentations
Opportunity includes a 30-minute podium presentation. Boxed lunches are delivered into the main session room, which guarantees audience attendance and participation. A limited number of presentations are available for sponsorship and they will sell out quickly. Sign on early to secure your talk!

Invitation-Only VIP Dinner/Hospitality Suite
Sponsors will select their top prospects from the conference pre-registration list for an evening of networking at the hotel or at a choice local venue. CHI will extend invitations and deliver prospects. Evening will be customized according to sponsor’s objectives i.e.:
• Purely social
• Focus group
• Reception style
• Plated dinner with specific conversation focus

Exhibit
Exhibitors will enjoy facilitated networking opportunities with qualified delegates. Speak face-to-face with prospective clients and showcase your latest product, service, or solution.

Looking for additional ways to drive leads to your sales team?
CHI’s Lead Generation Programs will help you obtain more targeted, quality leads throughout the year. We will mine our database of 800,000+ life science professionals to your specific needs. We guarantee a minimum of 100 leads per program! Opportunities include:
• Whitepapers
• Web Symposia
• Custom Market Research Surveys
• Podcasts and More

Inquire about additional branding and sponsorship opportunities!

To secure your participation, please contact:
Carolyn Benton
Business Development Manager
Phone: 781-972-5412
Email: cbenton@healthtech.com

MEDIA PARTNERS

Hotel & Travel Information

Conference Hotel:

Hyatt Regency Cambridge
575 Memorial Dr
Cambridge, MA 02139
T: 1-888-421-1442

Discounted Room Rate: $209 s/d
Discounted Room Cut-off Date: February 16, 2015

Please call the hotel directly to reserve your sleeping accommodations. You will need to identify yourself as a Cambridge Healthtech Institute conference attendee to receive the discounted room rate with the host hotel. Reservations made after the cut-off date or after the group room block has been filled (whichever comes first) will be accepted on a space-and-rate-availability basis. Rooms are limited, so please book early.

Top Reasons to Stay at The Hyatt Regency Cambridge
• Complimentary internet in guestrooms
• Hotel will provide shuttle to/from Kendall and Harvard Square each evening from 6-10pm
• Approximately 15 minutes from Boston Logan International Airport
• Sundeck overlooks the beautiful Boston skyline along the Charles River

Flight Discounts:
Special discounts have been established with American Airlines for this conference.
• Call American Airlines 1-800-433-1790 and use Conference code 000000.
• Go to www.aa.com/group and enter Conference code 6134AF in promotion discount box.
• Contact our designated travel agent, Rona Meizler, at 617-559-3735 or rona.meizler@protravelinc.com
Targeting Mitochondrial Dysfunction & Toxicity

March 19-20, 2015
Hyatt Regency Cambridge | Cambridge, MA

Pricing and Registration Information

<table>
<thead>
<tr>
<th></th>
<th>Commercial</th>
<th>Academic, Government, Hospital-affiliated</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT COURSE PRICING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Includes access to short course only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug-Induced Mitochondrial Toxicity</td>
<td>$699</td>
<td>$399</td>
</tr>
</tbody>
</table>

CONFERENCE PRICING		
(Includes access to 1.5-day conference, excludes short course)		
Late Registration Rate Until March 18	$1649	$759

CONFERENCE DISCOUNTS		
Register 3 - 4th is Free! Individuals must register for the same conference or conference combination and submit completed registration forms together for discount to apply. Please reproduce this registration form as needed.		
ALUMNI DISCOUNT: Alumni Discount - SAVE 20%: CHI appreciates your past participation at Targeting Mitochondrial Dysfunction & Toxicity. As a result of the great loyalty you have shown us, we are pleased to extend to you the exclusive opportunity to save an additional 20% off the registration rate.		
Group Discounts are Available! Special rates are available for multiple attendees from the same organization. For more information on group discounts contact David Cunningham at 781-972-5472		

| POSTER DISCOUNT | | |
| $50 | $50 | |

Poster abstracts are due by February 13, 2015. Once your registration has been fully processed, we will send an email containing a unique link allowing you to submit your poster abstract. If you do not receive your link within 5 business days, please contact jring@healthtech.com.

* CHI reserves the right to publish your poster title and abstract in various marketing materials and products.

I cannot attend but would like to purchase the Targeting Mitochondrial Dysfunction & Toxicity CD for $350 (plus shipping), please visit healthtech.com/mitochondrial-targeting. Massachusetts delivery will include sales tax.