Oligonucleotide Therapeutics & Delivery

Advances in the Development and Delivery of Aptamer, Antisense and RNA Therapeutics

TOPICS INCLUDE:
- Advances in Oligonucleotide Therapeutics
- Synthesis and Medicinal Chemistry
- Cancer Immunotherapy and Combinations
- Antiviral Development
- RNA Therapeutics and Delivery
- Delivery to the CNS
- Novel Approaches for in vivo Delivery

FEATURED SHORT COURSE
SC1: Oligonucleotide Therapeutics: From Discovery to Manufacturing
SUNDAY, APRIL 3 • 5 - 8 PM

REGISTER BY JANUARY 8TH AND SAVE UP TO $350

Keynote Speaker
Muthiah (Mano) Manoharan, Ph.D.
Senior Vice President, Drug Discovery, Alnylam Pharmaceuticals, Inc.

Featured Speakers
Art Krieg, M.D.
Founder and CEO, Checkmate Pharma

Dong-ki Lee, Ph.D.
Professor, Sungkyunkwan University, South Korea; CEO, OliX Pharmaceuticals

Punit Seth, Ph.D.
Executive Director, Medicinal Chemistry, Isis Pharmaceuticals

Corporate Support Sponsor
ChemGenes Corporation

Cambridge Healthtech Institute’s Inaugural

APRIL 4-5, 2016
Hyatt Regency Cambridge
Cambridge, MA

www.healthtech.com/oligonucleotide
Sponsorship, Exhibit, and Lead Generation Opportunities

CHI offers comprehensive sponsorship packages which include presentation opportunities, exhibit space, branding and networking with specific prospects. Sponsorship allows you to achieve your objectives before, during, and long after the event. Any sponsorship can be customized to meet your company’s needs and budget. Signing on early will allow you to maximize exposure to qualified decision-makers.

Podium Presentations — Available Within the Main Agenda!
Showcase your solutions to a guaranteed, targeted audience. Package includes a 15- or 30-minute podium presentation within the scientific agenda, exhibit space, on-site branding, access to cooperative marketing efforts by CHI, and more.

Breakfast & Luncheon Podium Presentations
Opportunity includes a 30-minute podium presentation. Boxed lunches are delivered into the main session room, which guarantees audience attendance and participation. A limited number of presentations are available for sponsorship and they will sell out quickly. Sign on early to secure your talk!

Invitation-Only VIP Dinner/Hospitality Suite
Sponsors will select their top prospects from the conference pre-registration list for an evening of networking at the hotel or at a choice local venue. CHI will extend invitations and deliver prospects, helping you to make the most out of this invaluable opportunity. Evening will be customized according to sponsor’s objectives i.e.:
• Purely social
• Focus group
• Reception style
• Plated dinner with specific conversation focus

Exhibit
Exhibitors will enjoy facilitated networking opportunities with qualified delegates. Speak face-to-face with prospective clients and showcase your latest product, service, or solution.

One-on-One Meetings
Select your top prospects from the pre-conference registration list. CHI will reach out to your prospects and arrange the meeting for you. A minimum number of meetings will be guaranteed, depending on your marketing objectives and needs. A very limited number of these packages will be sold.

Additional branding and promotional opportunities are available, including:
• Conference Tote Bags
• Literature Distribution (Tote Bag Insert or Chair Drop)
• Badge Lanyards
• Padfolios
• Program Guide Advertisement

Looking for additional ways to drive leads to your sales team?
CHI’s Lead Generation Programs will help you obtain more targeted, quality leads throughout the year. We will mine our database of 800,000+ life science professionals to your specific needs. We guarantee a minimum of 100 leads per program! Opportunities include:
• Whitepapers
• Web Symposia
• Custom Market Research Surveys
• Podcasts

For sponsorship and exhibit information, please contact:
Carolyn Benton
Business Development Manager
781-972-5412 | cbenton@healthtech.com
About This Event

Oligonucleotide–based therapeutics have long formed the third major drug development platform, specifically focused on modulating gene expression by targeting RNA or the genome itself. A key distinguishing attribute of nucleic acids as therapeutic agents is their ability to access the “undruggable” space left by small molecules and biologics, allowing drug developers to address a wider range of diseases, and particularly those with limited or no therapeutic options. This has generated significant interest in this field; however, first generation molecules exhibiting potency and safety issues have hindered the potential of oligonucleotide therapies dramatically impacting the drug development landscape. Recent advances in nucleic acid chemistry and delivery to improve stability, bioavailability, specificity and potency are now driving the rapid development and clinical evaluation of a new generation of therapies poised for success.

Cambridge Healthtech Institute is proud to introduce the Oligonucleotide Therapeutics and Delivery conference, April 4-5 at the Hyatt Regency in Cambridge, MA. The meeting will gather leading drug developers and discovery scientists to discuss technological and scientific advances of oligonucleotide-based therapeutics.
Registration and Morning Coffee

Welcome Remarks by Conference Director
Kip Harry, Conference Director, Cambridge Healthtech Institute

ADVANCES IN Oligonucleotide THERAPEUTICS

Chairperson’s Opening Remarks
Dmitry Samarsky, Ph.D., Senior Vice President, Technology & International Business, OliX Pharmaceuticals, Inc.

Keynote Presentation: GalNAc-Conjugated siRNAs as a New Paradigm in Oligonucleotide Therapeutics
Muthiah (Mano) Manoharan, Ph.D., Senior Vice President, Drug Discovery, Alnylam Pharmaceuticals, Inc.
During this presentation, I will discuss the progress in the advancement of RNAi therapeutics and review delivery of RNAi and where the field is going. I will also discuss conjugated delivery of oligonucleotides to the liver and combining novel chemical modifications with conjugation strategies.

Development of Stereopure Nucleic Acid Therapeutics
Chandra Vargese, Ph.D., Senior Vice President and Head, Drug Discovery, WAVE Life Sciences
WAVE Life Sciences is utilizing its innovative and proprietary synthetic chemistry drug development platform to design, develop and commercialize stereopure nucleic acid therapeutics that precisely target the underlying cause of rare genetic diseases, delivering exceptional treatment options for patients. Given the unique versatility of its chemistry platform, WAVE’s pipeline will span multiple oligonucleotide modalities including antisense, exon-skipping and single-stranded RNA.

Novel Phosphorodiamidate Oligomers (PMOs) for the Treatment of Genetic and Infectious Diseases
Bruce Wentworth, Ph.D., Vice President, Biology, Sarepta Therapeutics
PMOs are being tested in advanced clinical trials for the treatment of patients with Duchenne muscular dystrophy (DMD), a rare, X-linked disease that results in progressive muscle loss and premature death. Research has shown that for other disorders, including viral and bacterial infection as well as rare diseases such as Pompe disease, modified PMOs may be more appropriate due to their potential for enhanced delivery and tissue targeting. The PMO-based technology has the potential to be a versatile, modifiable, and widely applicable treatment in any number of disease states.

SYNTHESIS AND MEDICINAL CHEMISTRY

Featured Presentation: Solid-Phase Synthesis of 5'-Triantennary N-Acetylgalactosamine Conjugated Antisense Oligonucleotides Using Phosphoramidite Chemistry
Punit Seth, Ph.D., Senior Research Fellow, Medicinal Chemistry, Isis Pharmaceuticals
A convenient solid-phase synthetic method was developed for assembling a triantennary N-acetylgalactosamine (GalNAc) cluster on the 5'-end of antisense oligonucleotide using phosphoramidite chemistry. Conjugation of the 5'-triantennary GalNAc cluster improved potency of the 14 mer ASO 7-fold in mice and more than 50-fold in hepatocytes. The synthetic approach described in this Letter simplifies the synthesis of 5'-triantennary GalNAc cluster conjugated ASOs and helps understand the structure-activity relationship for targeting hepatocytes with oligonucleotide therapeutics.

Phosphorodithioate RNA for RNA-Based Therapeutics
Xianbin Yang, Ph.D., Director, R&D, AM Biotechnologies
During this presentation I will discuss the chemistry for synthesizing phosphorodithioate (PS2)-modified siRNAs, aptamer, and anti-miRNAs; crystal structures of PS2-modified siRNAs and protein-RNA complexes; therapeutic aptamers with remarkably improved binding affinity (from nM to pM) with a single PS2 substitution; and in vitro and in vivo gene silencing activity of PS2-substituted RNA.
11:45 CASE STUDY: Reversing the Effect of Oncogenic hTERT Promoter Mutations with Strand-Invading Oligonucleotides

Donald M. Miller, M.D., Ph.D., Professor, Medicine and Pharmacology; Chief, Division of Medical Oncology and Hematology; Director, James Graham Brown Cancer Center; University of Louisville School of Medicine

More than 80% of melanomas and glioblastomas have mutations in the hTERT promoter. We have shown that these mutations destabilize the promoter quadruplex structure and allow increased hTERT expression and cellular proliferation. Mutation-targeted G-rich oligonucleotides bind to the mutated C-rich strand, stabilizing the quadruplex structure in the “off” position. In cells containing the mutated promoter sequence, these oligonucleotides inhibit hTERT expression and cellular proliferation, resulting in apoptosis. We will discuss the potential therapeutic utility of these strand-invading oligonucleotides.

12:15pm Luncheon Presentation (Sponsorship Opportunity Available) or Lunch On Your Own

CANCER IMMUNOTHERAPY AND COMBINATIONS

1:25 Chairperson's Remarks

Art Krieg, M.D., Founder and CEO, Checkmate Pharma

1:30 Featured Presentation: Prospects for Increasing the Response Rates to Checkpoint Inhibition: The Role of TLR9

Art Krieg, M.D., Founder and CEO, Checkmate Pharma

Many immunologists have speculated that combining a strong Th1 immune activator known to be capable of inducing multifunctional anti-tumor CD8+ T cell responses in cancer patients together with anti-PD-1/PD-L1 would greatly increase the response rates to therapy compared to either agent alone. Checkmate’s TLR9 agonist program has shown such a response in humans with excellent safety, and will be moving into clinical development in combination with an anti-PD-1 antibody in advanced cancer patients in early 2016.

2:30 A Novel RNA-Based Adjuvant Combines Strong Immunostimulatory Capacities with a Favorable Safety Profile

Mariola Fotin-Mleczek, Ph.D., CSO, CureVac

Purified recombinant proteins and peptides, which are currently under development in various anti-cancer vaccination approaches, lack sufficient immunogenicity. Therefore, potent adjuvants are needed to induce strong and persistent anti-tumor immunity. Here, we demonstrate that a novel, well-defined, and thoroughly characterized RNA-based adjuvant mediates balanced and long-lasting humoral and cellular immune responses. Our adjuvant significantly enhances anti-tumor immunity, and even complete tumor rejection can be achieved as shown for the syngeneic TC-1 tumor model, a murine model of human HPV-induced cervical cancer.

3:00 Refreshment Break in the Exhibit Hall with Poster Viewing

3:30 Oligonucleotide Aptamer Targeted RNA Therapeutics: A Novel Platform for Cancer Immunotherapy

Eli Gilboa, Ph.D., J. Enola Dodson Professor, Microbiology & Immunology, UM/Sylvester Comprehensive Cancer Center; Director, Dodson Interdisciplinary Immunotherapy Institute, Leonard Miller School of Medicine, University of Miami

In this presentation I will describe the use of complementary and synergistic strategies to potentiate antitumor immunity in cancer patients using oligonucleotide aptamer platforms to target immune modulatory siRNAs or aptamers to the immune system or the tumor microenvironment, respectively. Aptamer targeted delivery of RNA therapeutics reduces the toxicities associated with their systemic administration, and the cell-free chemically synthesized nature of the oligonucleotides enhances their clinical applicability.

3:30 Cell-Based Cancer Immunotherapy in Suppressive Environment: Immune Checkpoint Knockdown by Self-Deliverable RNAi

Alexey Wolfson, Ph.D., Founder and CSO, MirImmune; CEO, Advira

MirImmune uses a proprietary RNAi-based technology to knockdown immune checkpoints in therapeutic cells to protect them from immunosuppression and improve their tumor-killing properties. We present results demonstrating the use of self-deliverable RNAi to suppress gene expression in T-cell and the effect of immune checkpoint knockdown on T-cells properties in vitro and in vivo. Improvements of T-cell efficacy by PD-1 knockdown will be demonstrated in two different systems: (i) tumor-infiltrating lymphocytes (TIL) for melanoma treatment and (ii) mesothelin-targeting CAR-T cells for the treatment of ovarian cancer.

4:00 Immunomodulatory Spherical Nucleic Acids

David Giljohann, Ph.D., CEO, Exicure

Immunomodulatory spherical nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate immunostimulatory, IS-SNA or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies.

4:30 Cancer Immunotherapy: Charting a Course in the Rough Seas of Intellectual Property

Konstantin M. Linnik, Ph.D., Partner, Intellectual Property, Nutter, McClennen & Fish, LLP; former Lead Patent Counsel for Oligonucleotide Therapeutics at Pfizer, Inc.

Both immuno-oncology and oligonucleotide IP spaces are crowded – the number of drugs in R&D far exceeds the number of targets. Navigating the IP around major targets is critical but, more importantly, every drug developer faces challenges in protecting its own intellectual property. What are the patenting strategies that allow entry into this crowded IP space, while preserving the broadest scope of protection and commercialization opportunities?

5:00 Welcome Reception in the Exhibit Hall with Poster Viewing

6:00 End of Day
7:30am Roundtable Discussions with Continental Breakfast

ANTIVIRAL DEVELOPMENT

8:25 Chairperson's Remarks
Andrew Vaillant, Ph.D., CSO, Replicor Inc.

8:30 Nucleic Acid Polymers: Antiviral Mechanisms and Application in the Treatment of Chronic HBV and HBV / HDV Infection
Andrew Vaillant, Ph.D., CSO, Replicor Inc.
Nucleic acid polymers (NAPs) are a newly emerging antiviral technology for the treatment of chronic HBV infection and HBV / HDV co-infection. NAPs have the unique ability to clear HBsAg from the blood of human patients, a critical step in achieving a functional cure in HBV and HBV / HDV infection. Replicor will present its current mechanistic data underlying the basis for this unique antiviral effect of NAPs as well as updated clinical data showing Replicor’s progress in using NAP-based combination therapy in patients with chronic HBV infection and HBV / HDV co-infection towards achieving functional cure for these infections.

9:00 CMX157, a Novel, Liver-Targeted, Tenofovir Prodrug, for the Treatment of Chronic HBV Infection
John Sullivan-Bólyai, M.D., CMO, ContraVir Pharmaceuticals Inc.
CMX157 is a novel, liver-targeted, lipid conjugate prodrug of tenofovir (TFV) designed to utilize natural lipid uptake pathways to achieve high hepatocellular levels of the active antiviral. Greater than 60 fold potency vs. TFV, high plasma stability and high first-pass liver extraction are expected to result in low clinical doses, anchoring single pill antiviral combinations, decreasing circulating TFV and off-target TFV toxicities, particularly to bone and kidneys, compared to the currently licensed TFV prodrug.

9:30 Lipid-Crystal Nano-Particles: Formulation and Delivery of Oligonucleotides
Raphael Mannino, Ph.D., CTO, Matinas BioPharma, Inc.
Cochleates are lipid crystals formed upon the interaction of charged lipids and cations. Drugs and oligonucleotides can be formulated so that they become sequestered within the layers of this stable structure. Once cochleates are inside a cell and exposed to low calcium ion concentrations they open and release their contents.

9:45 Coffee Break in the Exhibit Hall with Poster Viewing

ADVANCES IN RNA THERAPEUTICS AND DELIVERY

10:25 Chairperson’s Remarks
Balkrishen (Bal) Bhat, Ph.D., Vice President, Chemistry, RaNA Therapeutics

10:30 Novel Strategies for Endogenous mRNA Upregulation
Balkrishen (Bal) Bhat, Ph.D., Vice President, Chemistry, RaNA Therapeutics
RaNA is developing two novel approaches for endogenous mRNA upregulation. In first approach the recruitment of polycomb repressive complex (PRC2) to long non coding RNA (IncRNA) is blocked by short single stranded oligonucleotides. These oligonucleotides are designed to bind to the identified loci of long non coding RNA via Watson-Crick hydrogen bonding. We demonstrate that by blocking the interaction of PRC2 and IncRNA at the SMN2 locus resulted in significant and selective up-regulation of the SMN mRNA and protein. These results provide potential for the treatment of spinal muscular atrophy (SMA) a neurogenerative disease via a novel mechanism. The second approach leverages our understanding and knowledge that increasing the endogenous mRNA half-life would lead to up-regulation of target mRNA and corresponding protein. We demonstrate that chemically modified short single stranded oligonucleotides bind to targeted regions of mRNA and stabilize it against nuclease degradation which results in increased half-life and up-regulation of mRNA and protein. The examples of in vitro and in vivo proof of concept will be presented.

11:00 Development of Novel Breakthrough Cancer Therapies Based on the Unique Functions of miRNAs
Iman Schultz, Ph.D., Project Manager, R&D, InteRNA Technologies BV
To explore miRNAs as therapeutic agents for the treatment of cancer, InteRNA Technologies has performed functional screens in cell lines covering different types of cancer. A number of miRNAs were selected based on the results from different cell-based assays, and lead candidates are now advancing in pre-clinical development programs for hepatocellular, skin (melanoma), head and neck, pancreatic, bladder and prostate cancer. We have gained a significant understanding of the molecular mechanisms of action of the most promising candidates from extensive in vitro analyses, and their efficacy is currently explored in human cancer xenograft models in the mouse. This presentation will provide insights into the latest progress in the pre-clinical development of InteRNAs lead mRNA compounds.

11:30 Development of Lipid-Based Oligonucleotide Delivery Systems
Volker Fenning, Ph.D., Director, Formulation Development, Silence Therapeutics GmbH
Posttranscriptional gene silencing by RNA interference can be therapeutically exploited to inhibit pathophysiological gene expression. However, in contrast to the established effectiveness of RNAi in vitro, safe and effective delivery of siRNAs to specific organs and cell types in vivo remains the major hurdle. Here, we report the development and in vivo characterization of a novel siRNA delivery system (DACC lipoplex) suitable for modulating target gene expression.

12:00pm Luncheon Presentation (Sponsorship Opportunity Available) or Lunch On Your Own

DELIVERY TO THE CNS

1:00 Chairperson's Remarks
Dong-ki Lee, Ph.D., Professor, Sungkyunkwan University, South Korea; CEO, OliX Pharmaceuticals
1:05
Therapeutic Antidepressant Potential of a Conjugated siRNA Silencing the Serotonin Transporter after Intranasal Administration
Andres Montefeltro, Ph.D., CEO, nLife Therapeutics, S.L.

nLife Therapeutics has developed different nucleic acid chemical modifications with the aim to optimize cell specific delivery capabilities to neurons. We have combined siRNAs and antisense oligonucleotides (ASOs) with some specific and potent small molecule ligands to neuronal receptors or transporters, named nOligos (neuronal specific oligonucleotides). These combinations proved to deliver the nucleic acid to the target neuron in an effective way. Also, the intranasal administration of the modified nucleic acids reached the targeted brain area and neurons in mice and monkeys.

1:35
Exosome Mediated Delivery of Therapeutic Oligonucleotides for Treatment of Neurodegenerative Disorders
Anastasia Khorova, Ph.D., Professor, Molecular Medicine, RNA Therapeutics Institute, University of Massachusetts Medical School

Oligonucleotide therapeutics is a new class of drugs, the clinical utility of which has been limited by inefficient tissue distribution and cellular uptake. Through our research, we have developed a novel methodology that enables the loading of hydrophobically modified oligonucleotides (hsiRNA) into exosomes. These hsiRNAs show efficient cellular uptake in vitro as well as broad brain distribution and in vivo efficacy. Exosome-formulated oligonucleotides might be a solution for the development of novel therapeutics for the treatment of neurodegenerative disorders.

2:05
Featured Presentation: Therapeutic Development Using the Second Generation RNAi Triggers
Dong-ki Lee, Ph.D., Professor, Sungkyunkwan University, South Korea; CEO, OliX Pharmaceuticals

I will introduce novel RNAi triggers with improved features over conventional siRNA, such as reduced off-target effects, enhanced cellular delivery when complexed with cationic delivery vehicles, and specific target gene silencing combined with immunostimulation. One of these second generation RNAi triggers, asymmetric siRNAs (asiRNAs), were combined with a specific set of chemical modifications to generate cell-penetrating asiRNAs (cp-asiRNAs), which can execute gene silencing without delivery vehicle both in vitro and in vivo. I will introduce current therapeutic development programs based on the cp-asiRNA structures.

2:35
A Novel Nano-Medicine Platform for Oligonucleotide Discovery and Delivery
Art Levin, Ph.D., Executive Vice President, Research and Development, Avivity NanoMedicines

Despite the considerable promise, delivery has proven to be one of the central challenges of oligonucleotide-based therapeutics. Oligonucleotides are large, hydrophilic and highly negatively charged, so they don’t cross cell membranes. We have pioneered the development of Precision NanoMedicines, which are targeted, polymeric nanoparticles encapsulating siRNA drug payloads for delivery to specific tumor types. These self-assembling nanoparticles can be decorated with antibodies, proteins, peptides and small molecules to bind to extracellular receptors and facilitate cellular uptake.

3:05
Refreshment Break in the Exhibit Hall with Poster Viewing

3:45
DsiRNA Applications for Oncology and Chronic Liver Diseases
Marc Abrams, Ph.D., Senior Director, Preclinical Development, Dicerna Pharmaceuticals, Inc.

Dicerna is advancing two platforms for delivery of Dicer-substrate siRNAs (DsiRNA): EnCore lipid nanoparticles for oncology, and GalNAc-DsiRNA-EX conjugates for liver indications. Lipid Nanoparticle (LNP) technology is an elegant solution for delivery of RNA triggers, since it enables both bioavailability to target organs as well as the ability to transfect target cells. Dicerna’s unique LNP platform delivers DsiRNAs to tumors of diverse origin. An optimized EnCore LNP containing a DsiRNA targeting CTNNB1, the gene encoding β-catenin, demonstrates anti-tumor efficacy in both xenografted tumors and spontaneous genetically-driven tumors. This formulation, DCR-BCAT, also demonstrates synergistic efficacy with other DsiRNAs and with small molecule cancer drugs. For RNAi indications in normal liver, GalNAc-DsiRNA-EX conjugates are a platform that enables high potency, stability and duration for RNAi delivery to hepatocytes. Examples for several targets in rodents and non-human primates will be covered.

4:15
Translation of Messenger RNA Therapeutics from Preclinical Research into Clinical Studies
Pad Chivukula, Ph.D., CSO & COO, Arcturus Therapeutics

Arcturus has developed a novel, potent and safe RNA Therapeutics platform called LUNAR™, a proprietary lipid-enabled delivery system for RNA medicines including small interfering RNA, messenger RNA, antisense and microRNA oligotherapeutics. In addition, we incorporate Unlocked Nucleic Acid (UNA) chemistry into the oligonucleotide drug candidate enabling the targeting of any gene in the human genome. This presentation will provide an update on our lead asset, an UNA-modified, LUNAR-formulated siRNA targeting transthyretin (TTR) for the treatment of TTR-mediated amyloidosis.

4:45
Clinical Development of RXI-109 to Reduce the Formation of Scars
Pamela Pavco, Ph.D., Chief Development Officer, RXi Pharmaceuticals Corp

RXI-109 is a self-delivering RNAi compound (sd-rxRNA®) in development as a therapeutic to target and reduce connective tissue growth factor (CTGF) in order to impede the fibrotic pathway. Preliminary results from Phase 2a dermal clinical trials indicate a better outcome (reduced scar formation) following hypertrophic scar revision surgery when the incision site is treated by intradermal injections of RXI-109. A summary of the ongoing dermal clinical trials and an overview of a Phase 1/2 trial to prevent subretinal fibrosis in subjects with neovascular age-related macular degeneration will be discussed.

5:15
Enhancing Cellular Delivery of Oligonucleotides via Targeting Approaches and Small Molecules
Rudolph L. Juliano, Ph.D., Boshamer Distinguished Professor, Department of Pharmacology, University of North Carolina

Ligand-oligonucleotide conjugates provide a promising approach for therapeutics by allowing selective accumulation in targeted tissues thus increasing efficacy and reducing toxicity. A major impediment to therapeutic use of conjugates, or of ‘free’ oligonucleotides themselves, is the fact that they are taken up by endocytosis and accumulate in various endomembrane compartments where they are pharmacologically inert. To overcome this problem we have used high throughput screening to identify small molecules that dramatically enhance the effectiveness of antisense, splice-switching and siRNA oligonucleotides.

5:45
Close of Conference
Pricing & Registration Information

SHORT COURSE – APRIL 3, 2016
(Includes access to short course only)

<table>
<thead>
<tr>
<th></th>
<th>Commercial</th>
<th>Academic, Government, Hospital-affiliated</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC1: Oligonucleotide Therapeutics: From Discovery to Manufacturing</td>
<td>$699</td>
<td>$399</td>
</tr>
</tbody>
</table>

CONFERENCE PRICING – APRIL 4-5, 2016
(Includes access to entire 2-day Oligonucleotide Therapeutics and Delivery conference. (Does not include access to short course).)

<table>
<thead>
<tr>
<th>Registration Period</th>
<th>Early Registration</th>
<th>Advance Registration</th>
<th>Late Registration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1,649</td>
<td>$1,799</td>
<td>$1,999</td>
</tr>
<tr>
<td></td>
<td>$849</td>
<td>$879</td>
<td>$1,029</td>
</tr>
</tbody>
</table>

CONFERENCE DISCOUNTS

- **Poster Submission - Discount ($50 Off):** Poster abstracts are due by February 26, 2016. Once your registration has been fully processed, we will send an email containing a unique link allowing you to submit your poster abstract. If you do not receive your link within 5 business days, please contact jring@healthtech.com. *CHI reserves the right to publish your poster title and abstract in various marketing materials and products.

- **REGISTER 3 - 4th IS FREE:** Individuals must register for the same conference or conference combination and submit completed registration forms together for discount to apply. Please reproduce this registration form as needed.

- **Group Discounts:** Special rates are available for multiple attendees from the same organization. For more information on group discounts contact David Cunningham at 781-972-5472

ADDITIONAL REGISTRATION DETAILS

- Each registration includes all conference sessions, posters and exhibits, food functions, and access to the conference proceedings link.
- Handicapped Equal Access: In accordance with the ADA, Cambridge Healthtech Institute is pleased to arrange special accommodations for attendees with special needs. All requests for such assistance must be submitted in writing to CHI at least 30 days prior to the start of the meeting.
- **To view our Substitutions/ Cancellations Policy, go to http://www.healthtech.com/regdetails**
- Video and or audio recording of any kind is prohibited onsite at all CHI events.

How to Register:

- **healthtech.com/oligonucleotide**
- reg@healthtech.com • P: 781.972.5400 or Toll-free in the U.S. 888.999.6288

Please use keycode ONS F when registering!