The use of animal models in development of novel therapeutic strategies is the main emphasis of this report. Creation of new animal models is an important part of this research. Discussed in this publication:

- Case studies of the use of established animal models in developing novel therapeutic strategies
- Emerging animal models for use in drug discovery and the development of new therapeutic strategies
- Development of animal models that are more predictive of drug efficacy
- Technological developments in progress
- Use of computer models and translational biomarkers to move more effectively from preclinical animal studies to the clinic

Thought leader interviews and a user survey are also included.
OVERVIEW

ANIMAL MODELS for Therapeutic Strategies

Author: Allan B. Haberman, Ph.D.

Although animal models based on mammalian species have been long employed, more recently the pharmaceutical/biotechnology industry has also adopted several invertebrate and lower vertebrate animal models. The aim of using animal models to develop novel therapeutic strategies is to achieve knowledge of pathways and targets that leads to new paradigms for drug discovery and development.

Chapters 2, 3, 4, and 6 focus on the nematode *Caenorhabditis elegans*, the fruit fly Drosophila, the zebrafish, and the mouse, respectively. Each chapter includes cases studies of the use of each of these established animal models in developing novel therapeutic strategies for human disease. Chapters 5 and 7 focus on emerging animal models, the African clawed toad *Xenopus tropicalis* and emerging mammalian animal models. Each of these chapters focuses on technological developments in progress to develop tractable animal models based on these organisms. Chapter 7 also includes a discussion of the rat as an animal model, which is “reemerging” as the result of new technologies and collaborations.

Chapter 8 discusses the use of computer models and translational biomarkers in helping researchers move more effectively from preclinical animal studies to human clinical trials. Pharmaceutical and biotechnology company researchers have been increasingly applying pharmacokinetic/pharmacodynamic modeling to all stages of drug development. These models, as well as biophysical models such as those developed by Novartis and physiological models such as those developed by Entelos, can help researchers more effectively use animal model data in the design of clinical trials. In particular, they can help researchers reduce drug attrition in clinical trials due to suboptimal dosing.

Chapter 6, which focuses on the mouse, concludes with a discussion of the issue of developing more predictive animal models of drug efficacy, specifically more predictive mammalian models. One main reason for researchers’ difficulties in producing predictive mouse models is major unknown factors in disease biology. Although these factors make developing predictive animal models difficult, researchers can use animal models to learn about unknown or poorly understood areas of disease biology. This is expected to lead to the development of improved animal models as well as the development of new therapeutic strategies and drugs.

Developing animal models that are more predictive of efficacy is an iterative process. But progress is being made, as researchers apply new knowledge and experimental approaches in elucidating the biology of particular diseases to creation of animal models.

TABLE OF CONTENTS

EXECUTIVE SUMMARY

CHAPTER 1 INTRODUCTION

1.1. Uses of Model Organisms
- Basic Research
- Developing Therapeutic Strategies
- Target Evaluation
- Preclinical Studies

1.2. Why Do We Need New Animal Models?
- Animal Models Used in Drug Discovery and Preclinical Studies
- Need to be More Predictive of Clinical Results
- Can animal models be replaced with human cellular models in drug discovery?
- New Animal Models to Aid Researchers in Understanding Disease Biology and Developing New Therapeutic Strategies

1.3. The Issue of Animal Welfare and Its Effects on Animal Research in Drug Discovery and Preclinical Studies
- The 3Rs
- The Effects of Public Perception and Behavioral Research on Support of Animal Research

CHAPTER 2 THE NEMATODE *CAENORHABDITIS ELEGANS* AS A MODEL SYSTEM

2.1. Introduction
2.2. A *C. elegans* Model of Parkinson’s Disease
2.3. Using *C. elegans* as a Platform for Drug Discovery and Target Identification via Chemical Genetics Studies
2.4. A *C. elegans* Model of Spinal Muscle Atrophy
2.5. Conclusions

CHAPTER 3 THE FRUIT FLY *DROSOPHILA MELANOGASTER* AS A MODEL SYSTEM

3.1. Introduction
3.2. Use of RNAi Screens to Identify Drug Targets in Drosophila Cells and a Novel Approach to Cancer Therapy
3.3. A Drosophila Model for Human Glioma
3.4. Conclusions

CHAPTER 4 THE ZEBRAFISH *DANIO RERIO* AS A MODEL SYSTEM

4.1. Introduction
4.2. Use of Forward Genetic Screens in Target Identification in Zebrafish: The Case of Polycystic Kidney Disease (PKD)
4.3. Zebrafish Models of Melanoma

To order a report, e-mail rlaraia@healthtech.com, call Rose LaRaia at 781-972-5444, or order on-line at InsightPharmaReports.com
CHAPTER 5

XENOPUS TROPICALIS: AN EMERGING MODEL SYSTEM

5.1. Introduction
5.2. Developing Genetic and Genomic Tools for X. tropicalis
5.3. Studies with X. tropicalis with Relevance to Human Disease
5.4. Conclusions

CHAPTER 6

MOUSE MODEL SYSTEMS

6.1. Introduction
6.2. Background: Complex Diseases Are Difficult to Model
6.3. Comprehensive Strategies to Improve Mouse Models
6.4. Other Strategies for Improving Mouse Model Studies: Phenotyping and Modeling
6.5. Case Study: A Mouse Model of Autism Based on Copy Number Variation
6.6. Case Study: A Difference between the Mouse and Humans May Affect Drug Discovery in Diabetes
6.7. Case Study: Using an Improved Mouse Model of Pancreatic Cancer to Develop Novel Therapeutic Strategies
6.8. Conclusions

CHAPTER 7

EMERGING MAMMALIAN MODEL SYSTEMS

7.1. Introduction
7.2. The Reemergence of the Laboratory Rat
7.3. Site-Directed Mutagenesis in Mammalian Models Other than the Mouse
7.4. Zinc-Finger Nuclease Genome Editing to Produce Knockout Rats
7.5. Creating Knockout Mice and Rats from Cultured Spermatogonial Stem Cells
7.6. Production of Transgenic Marmosets That Transmit Transgenes to Their Offspring
7.7. Conclusions

CHAPTER 8

MOVING FROM ANIMAL MODELS TO THE CLINIC

8.1. Modeling and Simulation
8.2. Computer Modeling and Simulation for Moving From Animal Models to the Clinic
8.3. Translational Biomarkers
8.4. Conclusions

CHAPTER 9

OUTLOOK

9.1. Animal Welfare Issues
9.2. “Established” and “Emerging” Animal Models
9.3. Advantages of Using Invertebrate Models and the Zebrafish in Drug Discovery Research

CHAPTER 10

THOUGHT-LEADER INTERVIEWS

10.1. Adrian Hill, PhD, Evotec
10.2. Davide Molho, DVM, Charles River
10.3. Brian W. Soper, PhD, The Jackson Laboratory
10.4. Ann Sluder, PhD, Scynexis

CHAPTER 11

INSIGHT PHARMA REPORTS’ ANIMAL MODELS SURVEY: JANUARY 2010

Question 1. Please classify your organization.
Question 2. What aspect(s) of the drug development process do you work in?
Question 3. What class(es) of drugs do you work on?
Question 4. Do you work directly with animal models?
Question 5. If you answered yes to question 4, in what aspect of drug development do you work with animal models?
Question 6. What types of animal models does your company use in-house?
Question 7. What types of animal models are used in studies that your company outsources to CROs?
Question 8. Do you agree that poorly predictive animal models have been a major reason for the low productivity of drug development?
Question 9. Has there been any improvement in the predictiveness of animal models for use in discovery research and preclinical studies since the initiation of the FDA’s Critical Path Initiative in 2004?
Question 10. Do you expect any improvements in the predictiveness of animal models for use in discovery research and preclinical studies in the next five years?
Question 11. Do you expect human cellular models that are based on induced pluripotent stem cells or similar technology to replace some uses of animals in pharmaceutical/biotechnology research over the next five years?
Question 12. Does your company use modeling/simulation to move from animal studies in the discovery and preclinical stages into human trials?
Question 13. Do you expect computer models (“virtual animal models,” “virtual human models,” “virtual physiological systems,” “virtual tumors,” etc.) to replace some uses of animal models over the next five years?
Question 14. Is development of computer-based animal or human models severely limited by researchers’ limited knowledge of biological systems and disease biology?
Question 15. How do regulations that are designed to promote animal welfare (e.g., the Animal Welfare Act, the Public Health Services’ Guide for the Care and Use of Laboratory Animals, local regulations, the 3Rs) affect your operations?
Question 16. Does your company work with any of the following groups to develop novel animal models?

REFERENCES

COMPANY INDEX WITH WEB ADDRESSES

TABLES AND FIGURES

TABLES

Table 1.1. Major Uses of Animal Models and Other Model Organisms
Table 2.1. Neuroprotective Genes Identified in C. elegans Parkinson’s Disease Model
Table 2.2. Other Putative Neuroprotective Genes in Parkinson’s Disease as Demonstrated in Non-C. elegans Systems
Table 4.1. Selected Genes Involved In Development of the Melanocyte Lineage and Their Potential Roles in Melanoma
Table 6.1. Comprehensive Strategies to Improve Mouse Models

FIGURES

Figure 3.1. The Role of Centrosomes in Mitosis
Figure 3.2. The TORC1 and TORC2 Pathways
Figure 4.1. The Ras Pathway and Role of BRAF
Figure 7.1. Zinc-Finger Nuclease-Mediated Gene Disruption
About Insight Pharma Reports

CHI’s Insight Pharma Reports are written by experts who collaborate with CHI to provide a series of reports that evaluate the salient trends in pharmaceutical technology, business, and therapy markets. Insight Pharma Reports are used by senior decision makers at life sciences companies to keep abreast of the latest advances in pharmaceutical R&D, their potential applications and business impacts. Our clients include the top 50 pharmaceutical companies, top 100 biotechnology companies, and top 100 vendors of life science products and services. Typical purchasers are managers, directors, and VPs in business development, discovery research, clinical development, strategic planning, portfolio management, new product planning, and marketing.

Insight Pharma Reports offer:
• Current information and analysis of R&D technologies, therapeutic markets, and critical business issues.
• Analysis of the probability of success for various applications of each technology.
• Expert insight based on interviews with key personnel in companies at the forefront of technological advances who share their views on their technology’s current status, applications, future direction, and market environment.

Barnett Educational Services Leading Industry Publication
PAREXEL’s Bio/Pharmaceutical R&D Statistical Sourcebook 2009/2010 is the leading resource for statistics, trends and proprietary market intelligence and analysis on the biopharmaceutical industry. For more information, visit www.barnettiinternational.com or call 800-856-2556

YES! I WOULD LIKE TO RECEIVE A FREE SUBSCRIPTION TO:
☐ eCliniqua Innovative management in clinical trials
☐ Pharma Services News Service solutions for discovery, pre-clinical and clinical trials
☐ Weekly Update The latest industry news, commentary, and highlights from Bio•IT World

ANIMAL MODELS for Therapeutic Strategies

Animal Models for Therapeutic Strategies – March 2010 (est. 300 pp)
Approaches to Reducing Phase II Attrition – May 2009 (160 pp)

Purchase both reports and receive a 10% discount

*Single-site licenses are multi-user, searchable, cut-and-paste ready PDFs

Call for global license pricing; contact David Cunningham at 781-972-5472 or cunningham@healthtech.com

Choose a payment option:
1. ☐ Enclosed is a check order payable to Cambridge Healthtech Publishing, in U.S. currency. (In Massachusetts, add 6.25% sales tax.)
2. ☐ Purchase order number ____________
3. ☐ Credit card: ☐ Amex ☐ Visa ☐ MC ________________ Exp. Date: __________ Sec. Code: __________

Cardholder: ___ Signature: __________________________
☐ Mr. ☐ Mrs. ☐ Miss. ☐ Dr. First Name: __________________________ Last Name: __________________________
Job Title: ________________ Div./Dept. ________________ Company: ________________
Address (please include Mail Stop, Room or Bldg. #): ___
City/State/Postal Code: __________________________ Country: __________________________
Telephone: __________________________ Fax: __________________________ E-Mail: __________________________

Please refer to the key code below

TO ORDER:
Web: InsightPharmaReports.com
Phone: 781-972-5444
Fax: 781-972-5425
E-mail: rlaraia@healthtech.com
Mail: Cambridge Healthtech Institute
Rose LaRaia
250 First Avenue, Suite 300
Needham, MA 02494